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many-body problems where all sites are directly coupled
by scalar operators. (If a matrix representation were con-Projection operators are used to effect ‘‘deflation by restriction’’

and it is argued that this is an optimal Lanczos algorithm for memory structed, it would be sparse.) In contrast to most electron-
minimization. Algorithmic optimization is constrained to dense, Her- spin models, the solutions are not pure spin states, and the
mitian eigensystems where a significant number of the extreme Hamiltonian is not block-diagonalizable. These examples
eigenvectors must be obtained reliably and completely. The defin-

are discussed in Section 4 and are used to illustrate theing constraints are operator algebra without a matrix representation
algorithm in considerable detail.and semi-orthogonalization without storage of Krylov vectors. Other

semi-orthogonalization strategies for Lanczos algorithms and conju- In Section 5 we consider plane-wave density functional
gate gradient techniques are evaluated within these constraints. theory of beryllium clusters. These examples are dense.
Large scale, sparse, complex numerical experiments are performed The focus is upon the use of preconditioners and spectral
on clusters of magnetic dipoles, a quantum many-body system that

transformations. For an applied mathematician theseis not block-diagonalizable. Plane-wave, density functional theory
transformations provide a wide variety of exercises withof beryllium clusters provides examples of dense complex eigensys-

tems. Use of preconditioners and spectral transformations is evalu- very different eigenvalue spectra. For a solid-state physi-
ated in a preprocessor prior to a high accuracy self-consistent field cist, these evaluate methods for accelerating computation
calculation. Q 1996 Academic Press, Inc. of electronic states when all electrons are explicitly repre-

sented (i.e., no pseudo-potentials).
Well-established techniques are inappropriate to these1. INTRODUCTION

constraints. The Householder transform as used in
LAPACK [2] obtains a tridiagonal representation of fullThe Lanczos algorithm for computing eigenvalues and
dimensionality and cannot compete with iterative proce-eigenvectors of a Hermitian matrix was introduced by Cor-
dures. (Memory requirements, alone, prohibit such proce-nelius Lanczos [1] in the early 1950s. Numerical analysis of
dures.) Efficient methods for one extreme eigenvectorthe method may be considered mature, and sophisticated
(e.g., Monte Carlo and some conjugate gradient algo-variants may be reliably applied to certain classes of prob-
rithms, CG) become very inefficient for hundreds oflems. We present a double iteration scheme for the block
vectors.Lanczos procedure, BL, with semi-orthogonalization that

is suitable for applications where memory minimization We believe that use of projection operators (and their
generalizations) in an iterative BL is an optimal expressionis the dominant consideration. We identify the imposed

constraints and focus upon the development of an appro- of semi-orthogonalization within our constraints. Our ma-
jor contribution is identification of the constraints and syn-priate variant of the block Lanczos algorithm. An assess-

ment of facts related to experiments are provided for sparse thesis of an appropriate algorithm from published work.
Given the extensive research and development of BL, ourand dense eigensystems where a significant fraction of the

extreme eigenpairs is sought. new contributions are largely a synthesis of previously de-
veloped techniques in relationship to the constraints weOptimization of the block Lanczos algorithm was ex-

plored within several constraints. The constraints arise have imposed. Cullum and Willoughby’s book [3] and B. N.
Parlett’s book [4] are our principle resources.from: intention to implement the optimized algorithm on

a distributed memory multiprocessor and the need to com- Arnoldi methods and their variants [5, 6] are closely
related to Lanczos algorithms incorporating full reorthogo-pute a significant fraction of the extreme eigenpairs. Large

eigenvector computation on parallel architectures with dis- nalization. Parlett and Scott [7] developed ‘‘selective or-
thogonalization’’ to correct the loss of orthogonality thattributed memory will be described in a subsequent article.

First, we consider clusters of magnetic dipoles, quantum plagues all Lanczos procedures. Simon [8] generalized this
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concept and developed ‘‘partial reorthogonalization.’’ forms of the CG and Lanczos methods are equivalent (for
positive definite matrices and with finite precision arithme-These improvements make great use of formal numerical

analysis to semi-orthogonalize the iteratively constructed tic). See Sections 4.2 and 4.3 of Ref. [3] and the references
therein. Minimization of the residual is equivalent to mini-Krylov space. We believe that these are not applicable to

our constraints, because we assume that recall of Krylov mization of the functional for quadratic functionals [16].
If the goal is calculating the best approximation to anvectors, however infrequently, is prohibited. Indeed, un-

availability of Krylov vectors essentially determines our eigenvalue or minimizing the energy, the two elementary
methods are equally efficient.approach and distinguishes it from the more sophisticated

algorithms referenced above. Given this equivalence, then why do some authors claim
that the CG is as much as an order of magnitude moreThe most important algorithmic developments are based

upon preconditioning, a ‘‘shift and invert’’ strategy [9]. The efficient than the Lanczos? Nobody uses the simple forms
of the algorithms. Fair comparisons require sophisticatedwork of Grimes, Lewis, and Simon [10] is the state-of-the-

art in finding the interior eigenvalues of sparse, generalized numerical analysis or numerical tests using the best avail-
able algorithms. We believe there are only two importanteigenvector problems. The success of this work stems from

the sparseness of the applications and the necessity of differences; unlike BL, CG methods do not need Krylov
vectors to construct the eigenvectors, but BL methods aredecomposing a matrix (whether or not a shift is applied).

Progress has been made in diagonal preconditioning [11] better suited to implicit and explicit restarts.
Important examples of quadratic energy functionalsfor dense, simple eigensystems using a generalization of

Davidson’s method [12] expressed as a doubly iterative include many-body electron spin problems (e.g., Ising,
Heisenberg, Hubbard, and Potts models). In many suchLanczos algorithm. This and other approximate spectral

transformations (e.g., our earlier work [13]) are studied in exercises, only one or two states are needed, and the
Hamiltonian matrix (if constructed) would be extremelySection 5. The goal is a BL algorithm using an accurate

shift operator (like Grimes, Lewis, and Simon [10]) for sparse. In Nightingale et al. [15] the comparison was made
between CG and a ‘‘modified’’ Lanczos [17], where thelarge, dense eigensystems implemented on a distributed

memory multiprocessor. Our projective block Lanczos al- energy is minimized within iteratively optimized, two-di-
mensional, Krylov subspaces. The CG and Lanczos meth-gorithm, PBL, and our evaluation of approximate spectral

transforms are a step towards this goal for specific classes ods would be equivalent if the full dimensionality of the
Krylov space was used in the Lanczos algorithm. This sim-of physical problems.

Our algorithm uses one form of semi-orthogonalization plification apparently trades accuracy for ‘‘efficiency.’’ But,
obtaining one or two eigenvalues of a large tridiagonalthat is known as ‘‘deflation by restriction.’’ (See Parlett’s

book [4].) The operator is deflated using projection opera- matrix is never the computational bottleneck.
For the density functional and Hartree–Fock theoriestors. More generally, the composite operator makes degen-

erate and shifts the converged vectors. In this technique, of electronic structure, assessments of the efficiency and
accuracy of BL and CG methods are important and non-the restarts are explicit and new Krylov spaces are con-

structed after each change to the operator, although more trivial. The work of Teter et al. [14] is an example of a
preconditioned CG with cyclic subspace iteration (band-efficient, implicit restarts require saving Krylov vectors.

Indeed, our memory constraint is severe enough, that our by-band minimization) applied to a nonquadratic func-
tional. Any BL algorithm with a semi-orthogonalizationrecursions must be run twice: first to approximate the ei-

genvalues and again to construct the eigenvectors. strategy would more efficiently maintain band orthogonal-
ity and the energy functional would be quadratic. However,
extra effort would be required to construct the states. Our2. LANCZOS AND CONJUGATE GRADIENT
PBL is applied to a generalization of band-by-band minimi-ALGORITHMS
zation in Section 4. Section 5 evaluates the preconditioner
of Ref. [14].Among solid state physicists and many-body theorists,

preconditioned conjugate gradient methods have achieved Some energy functionals are not quadratic, and some
functionals other than the energy may be directly opti-great success. Notable examples are the work of Teter,

Payne, and Allen [14] for plane-wave, density functional mized (e.g., recursive residue generation for Green’s func-
tions [18]). One may speculate that observables relatedtheory and the work of Nightingale, Viswanath, and Müller

[15] for many-body quantum mechanics of spin systems. to wave function properties may be better obtained by
minimizing the residual through BL algorithms. Direct cal-The formal equivalence of BL and CG algorithms is not

acknowledged in such work. We give one perspective on culation of transition moments without constructing states
might provide such a test.the debate concerning these techniques. We do not provide

numerical comparisons. Further assessment of sophisticated CG and BL proce-
dures applied to electronic structure theory will requireWhen the aim is minimization of the residual, simple
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numerical experiments on observables besides the energy. 100) although this is not required. The desired fraction of
the spectrum should be obtained completely and reliablyWe provide a preliminary study in Section 5. Fair compari-

sons should use blocked and doubly iterative versions of (i.e., within a predetermined tolerance). We assume a small
degree of degeneracy; the multiplicity of a desired statethe algorithms. Cullum and Willoughby provide a historical

account of the relationship between BL and doubly itera- should not exceed the block size. For simplicity, we assume
a complex, Hermitian eigensystem, and we believe thattive CG algorithms, and physicists advocating CG methods

would be well served by perusing this. generalization to nonHermitian systems would not be dif-
ficult.

We consider only block algorithms. This requirement3. PROJECTIVE BLOCK LANCZOS
arises from our parallel implementation, because data
movement on most high-performance architectures is slowThe constraints and assumptions guiding our develop-

ments are summarized. Memory use must be minimized, compared to floating point performance. Block algorithms
imply reduced amounts of memory traffic [19]. Block algo-and this implies that Krylov vectors cannot be stored. Op-

erator algebra must be assumed in the statement of the rithms also allow extensive use of BLAS level 3 routines
[20], their parallel counterparts when available, and assem-problem and in implementation of the algorithm.

By the use of ‘‘operator algebra,’’ we mean a linear bly coded libraries if available.
We will occasionally use SVL to refer to a class of single-operator acting on a trial vector without constructing a

matrix representation. All linear operators on finite vector vector Lanczos procedures that obtain a tridiagonal repre-
sentation in a Krylov space. The BL iteratively constructsspaces may be represented by matrices, but they need not

be. The statement of the eigenvector problem should not a band matrix (i.e., a banded matrix with a single band).
Please refer to Refs. [3, 4].use a matrix representation. Throughout this paper we will

write the Hamiltonian operator H(v) acting on a vector v We assume that evaluating the operator, H, dominates
the CPU time. The BL algorithm requires O(Nm2 1 mN2)as matrix multiplication Hv. (We use H instead of the

usual A.) flops, where m is the block size. O(mN2) dominates and
arises from matrix multiplication Hv. For operators, weIf N is the dimension of the space in which the operators

act, then no matrix H [ CN3N can be constructed or used. write O(mTH) P O(mN2), where TH is the execution time
for the operator. Assuming TH dominates allows us toStorage of H dwarfs storage of Krylov vectors. In other

words, if one stores H then the more sophisticated semi- diminish optimizations of the component, linear-alge-
braic procedures.orthogonalization strategies for the BL or Arnoldi proce-

dures are the method of choice. Note that this also prevents We present the algorithm abstractly. Afterwards, we
comment on theoretical details of projection operators,consideration of generalized eigenvector problems, unless

the decomposition step can be represented by operator al- block sizes, and convergence parameters. Practical consid-
erations and parameter choices are given in Sections 4 andgebra.

All many-body spin Hamiltonians, and the examples of 5. Finally, several questions are asked and answered, and
several improvements are described.Section 4, can be represented by operators, since the

matrix elements are simple analytic functions and the
nonzero elements are known in advance. More generally,

3.1. Algorithm
any sparse matrix multiplication using indirect addressing
may be considered an operator (in our use of the phrase). Our projective block Lanczos algorithm is a double itera-

tion scheme where the outer loop updates the initial vec-Plane-wave, density functional theory of Section 5 pro-
vides a beautiful example of an operator, a three-dimen- tors and the semi-orthogonalization algorithm and the in-

ner loop is the BL algorithm. Explicit restarts are used insional convolution in reciprocal space, plus a diagonal
(not constant) matrix. Indeed, the convolution is easier the outer loop. This is ‘‘deflation by restriction,’’ and the

BL inner loop constructs a new Krylov space for each re-to think about than its matrix representation (which is
completely unnecessary). start.

We seek M extreme eigenvalues and eigenvectors of aWe assume that most states are directly coupled by the
operator. In other words, the matrix H [ CN3N would dense Hermitian matrix. The Hermitian matrix H is evalu-

ated as an operator, or represented as H [ CN3N. Allbe dense. Nothing in our algorithm depends upon this
assumption. As mentioned above, sparse matrices, whose memory requriments and all results are reported for 16

byte complex numbers. If represented explicitly, the BLASstorage does not scale as N2 could be implemented as an
operator while adhering to our strict memory require- routine ZHPMV is used and H dominates the storage

requirements.ments.
We need to compute a significant fraction of the extreme The user specifies the initial block size m1 and provides

a set of linearly independent vectors. A range of residualseigenpairs. For M eigenpairs, we assume that M 5 O(N/
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«1 , «2 is specified for the M computed eigenvectors. A appears in the algorithm before the vectors are themselves
constructed. See Section 3.4.practical means for determining «1 and «2 is given in Sec-

tion 5.2. Step 3 repeats the BL recursion to compute the eigenvec-
tors. Construction of the band matrix and convergenceThe algorithm is structured as a double loop, with the

outer loop indexed by k. Step 0 sets up the outer loop, testing are unnecessary. The second BL must exactly repro-
duce the Qk

j in sequence. Alternatively, one can simplyand step 5 executes the loop. The inner loop is the BL
algorithm indexed by j. There are two distinct inner loops, store these matrices on the disk to avoid the additional

computation. Step 3f shows the matrix indices (i.e., subma-steps 1 and 3. Step 1 is described in detail and step 3 is a
slight modification of step 1. trix multiplication).

Step 4a forms a matrix as a union of a matrix and a setStep 1 begins with the action of H upon Qk
j . All Q [

CN3mk are left unitary, Q*Q 5 1, where the asterisk suffix of vectors, with Ck [ CN3p and Ck11 [ CN3p9 with p9 5 p 1
pk . Step 4b assigns the unconverged vectors to the startingdenotes conjugate transpose. The block size mk varies with

k but is fixed as j varies. The projection operator CklC*k block for the next iteration of the outer loop.
in step 1a is never formed explicitly, but is evaluated as a

0. set C1 5 0, m1 5 m, p 5 0, and k 5 1sequence of left-multiplications, with l, a real, diagonal
1. BL recursions: initialize Tk and Sk

1 5 ı̂matrix. See Section 3.2.
set Qk

0 5 0, Bk
1 5 0, and for j 5 1, 2, ... doMatrices X, R, A, and W are elements of CN3mk and

a. Xk
j 5 (I - Ck lC*k ) H Qk

jneed not be distinct. All Q are formed by QR factorization,
b. Rk

j 5 Xk
j - Qk

j21 Bk
j *which is step 1e. The B are upper triangular. The Q1

1 is
c. Ak

j 5 Qk
j * Rk

jobtained from the user-specified initial vectors by QR fac-
d. Wk

j 5 Rk
j - Qk

j Ak
jtorization. Similarly, one may factor initial vectors to ob-

e. Qk
j11 Bk

j11 5 Wk
jtain Qk

1 for k . 1. This is required only if over-completeness
f. increase memory allocation for Tkis suspected (cf. Section 3.5).
g. store Ak

j and Bk
j11 in TkThe BL recursions in step 1 build a Hermitian band

h. update Sk
1matrix Tk [ Cn3n with n 5 mkJk . The band matrix has

i. if iBk
j11 si , «1 goto 2, else goto 1a.band width mk and is stored as Cnb3nt with nb 5 mk/2 1

1 and nt $ maxhmk Jk .: kj, as specified in Ref. [2, Section 2. ZHBEVX applied to Tk

5.3]. Step 1g, constructs Tk, in sequence, from the lower- a. store eigenpairs hLk
n , Sk

n for n 5 1, ..., mk 1 dmj
triangular part of Ak

j and the upper-triangular matrix b. hpk 5 0; n 5 1}, while iBk
j11 sk

ni , «2 do hpk 5
Bk

j11 . The compact storage scheme is a sequence of upper- pk 1 1; n 5 n 1 1j
right and lower-right triangles packed A1B2A2B3 ... into a c. p 5 p 1 pk ; mk11 5 min(m, M-p)
Cnb3nt matrix. 3. BL recursion : set Jk 5 j, and vary j 5 1,2, ...

The s in step 1i represents the last mk elements of S1 , 3a through 3e exactly as in steps 1a through 1e; or
one approximate extreme eigenvector of the band matrix. read Qk

j from disk
Updating S1 , is described in Section 3.4. This is used to f. for i from jmk-mk 1 1 to jmk and for n from 1
evaluate convergence and to terminate the BL. The total to mk do
number of BL steps to convergence is Jk .

A caution concerns the use of the scalar zero in BLAS
routines (e.g., ZGEMM and ZGEMV) in step 1 for k 5 Vk

in 5 Omk

i951
Qk

jii9 Sk
i9n1. This does not clear memory, as expected, if the memory

has previously contained any integer data (i.e., zero times
NANQ is NANQ). g. if j 5 Jk , goto 4, else goto 3a.

Step 2 obtains several eigenvectors of Tk using
4. a. Ck11 5 Ck < hVk

n for n 5 1, ..., pkjZHBEVX from LAPACK [2] that ‘‘computes selected ei-
b. Qk11

1 5 hVk
n for n 5 pk 1 1, ..., pk 1 mk11jgenvalues and, optionally, eigenvectors of a complex Her-

5. if p 5 M stop, else hk 5 k 1 1; goto 1j.mitian band matrix.’’ The eigenvectors are S [ Cn3m with
n 5 mkJk and m 5 mk 1 dm. Any SVL will be faster and

3.2. Projection Operators
smaller and should replace ZHBEVX once the algorithm
is implemented and tested. See Section 3.5. When l is a unit matrix, step 1a applies a projection

operator, P 5 I-CC*, following the Hamiltonian operator.In step 2, mk 1 dm eigenvectors are found, as discussed
in Section 3.3. Step 2b uses s to indicate the last mk elements For unitary C, the projection CC* is onto the subspace E

spanned by vectors in C, and P is the complementaryof S. pk counts the number of newly converged vectors,
and p accumulates the total number converged to this projection onto the orthogonal subspace E*. Both opera-

tors are Hermitian and idempotent. All is true with minorpoint. Selection of newly converged vectors uses e2 and
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TABLE Imodifications for C being nonorthogonal. If a matrix repre-
sentation H is used, the projection operator may be incor- The Effect of Block Size on Performance
porated directly into H using Hermitian rank-one updates,

M m k SJkmkBLAS routine ZHPRU.
To improve efficiency, we perform the Lanczos recur-

64 32 3 2942
rences using PH rather than PHP. The matrix representa- 64 3 2396
tion in space E* of PHP is equal to PH. Given an iterative 96 3 2838

128 2 3380method that can be written by a recurrence relation involv-
ing only vectors in E* and powers of the operator, the

96 32 3 3132sequence of vectors arising from PH is equivalent to the
64 3 2820

sequence arising from PHP. 96 3 3145
With l 5 I, all vectors in E are eigenvectors with zero 128 3 3565

eigenvalue. Finite precision arithmetic allows the full Kry-
Note. Block size m is varied for a magnetic dipole example with N 5lov space to accumulate a component in E. Thus, multiple

4096, «1 5 1*1027, and «2 5 50 «1 . Performance is measured by the totalzero eigenvalues of Tk will be found for large Jk. This
number of Krylov vectors used, fourth column. This assumes that Hv

seriously affects the convergence of unknown eigenpairs dominates the performance and other linear algebra is negligible. The
lying near zero. cost is higher for small m because some Ritz vectors must be recomputed.

It is pointless to set m . M.When l ? I, P 5 I-Cl C* is not a projection operator.
However, the statements regarding subspaces and PH hold
true. Use of PH instead of PHP holds a theoretical advan-
tage: inaccuracies in C are multiplied by l instead of l2. algorithm favors large numbers of BL steps for each

outer iteration.For l ? I, the operator shifts the effective eigenvalues of
the converged vectors away from the region of interest. A The principal factor favoring a large m is efficiency. This

is critical to parallel computing. For our examples, thenonconstant ln , 5 1-e/Ln , implies PH v 5 ev, ;v [ E.
This degeneracy further accelerates convergence. We have operator subroutine will be more efficient for large mk ,

when the inner loop is unrolled. In other words, the costfound [21] the latter to be necessary for Jk . 10mk .
An additive ‘‘project and shift’’ operator, (I-CC*)(H- per vector of any non-sparse operator decreases with mk ,

asymptotically approaching the cost of matrix multiplica-«) 1 «, may have better numerical stability than the multi-
plicative expression when the converged Ln range over tion. An example is given in Section 5.1. Similarly, for

preconditioners and other spectral transformations, themany orders of magnitude. The multiplicative variant is
more general, encompassing the additive form. Advan- procedures are more efficient for larger mk . In general, it

is best to choose m0 # m # M, where M is the numbertages to further generalization (e.g., l being any Hermitian
matrix or operator) are not clear. of desired eigenvectors. The value of m0 is a problem-

dependent parameter approximating the number of con-Given E spanned by approximate eigenvectors of H,
what is the smallest achievable residual for a new vector verged eigenvectors during the first iteration or the multi-

plicity of the desired eigenvalues.obtained from E*? Obviously, a true eigenvector pro-
jecting entirely onto E* could be computed very accurately. Regardless of the procedure used to obtain S, dm does

not affect the memory requirements. An excess of eigen-A true eigenvector could project largely onto both sub-
spaces due to ‘‘noise’’ in E arising from inaccurate solutions vectors, dm, may be computed with no effect on memory

and little effect on speed. Usually, set dm 5 min(m, M-for C. The original question is restated, ‘‘Can we assume
that none of the desired eigenvectors project significantly m). (Note. dm should be negative when m . M.)

Suppose m 5 M/2 and p1 5 m/4. Since the storage isonto the noise in E?’’ The difficulty arises only if one
desires interior or quasi-degenerate eigenvalues. (Well defined by m, excess unconverged Ritz vectors are thrown

away when dm . p1 . Ideally, one should set dm 5 max(pk),separated, extreme eigenvectors are the earliest members
of E.) Failure results in a missed eigenvector, but such are the number of converged vectors. Since this is unknown,

it is likely that unconverged Ritz vectors will be unusedeasily identified.
when m , M.

This is demonstrated in Table I, rows 1 and 5. In our
3.3. Block Size

experience with iterative, single vector Lanczos, the infor-
mation is largely preserved by using linear combinationsThe choice of block size m has a major effect upon the

performance of the algorithm. Two factors favor the choice as starting vectors for the next iteration. Preliminary tests
indicate that a good restart strategy is nontrivial.of small m. The storage required for computation of the

eigenvectors of Tk increases as a quadratic function of In row 4, only two iterations were performed, but the
initial number of BL recursions, J1 , is unchanged. Thethe block size; and, the asymptotic convergence of the
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large block size reduces the effort in subsequent iterations, not be compactly represented, requiring (mkJk)2 double
complex words. Ignoring the compactly stored Tk and sin-but the initial cost, 128J1 , is excessive.
gle vectors, memory must exceed (mkJk)2 1 mkJk (mk 1
dm). This waste of memory is the primary reason why one3.4. Convergence Criteria
should shun ZHBEVX. Notice that Ref. [2, p. 194] grossly

We describe the parameters «1 and «2 , the convergence
overstates the memory required by ZHBEVX for the ei-

criteria, and initial vectors, Q1
1 . Section 5.2 suggests a strat-

genvectors. The above is correct.
egy for quantitatively choosing «1 and «2 . Furthermore,

As given, the algorithm can compute a set of eigenvec-
the effect of scaling the matrix aH is critical to the compari-

tors M much larger than m. In such an application, C [
son of different operators in Section 5.4. Section 5 is more

CN3p dominates the memory requirements. The difficulty
important in practice. This section provides a better under-

is that C is required often and should not be stored on
standing of the algorithm.

disk. The projection operator need not be applied at every
The algorithm provides eigenvectors whose residuals lie

step (i.e., semi-orthogonalization instead of full orthogo-
between «1 and «2. The stopping criterion within the BL

nalization). References [7, 8] provide criteria and tech-
iteration is determined by «1 , the lower bound. Once

niques for less frequent use of C while maintaining compa-
stopped, vectors are considered converged if their residual

rable accuracy.
lies below the upper bound «2 , the maximum acceptable

The projection operator may contain vectors obtained
residual. An estimate is required for Sk

1 , one eigenvector
from other sources. Although not shown [21] the example

of the band matrix. The estimate from the previous itera-
in Section 5 benefits from separately converging ‘‘core’’

tion, Sk21
1 , is updated using several iterations of CG fol-

and ‘‘valence’’ states by including the complementary set
lowed by an SVL procedure. Without the CG, the SVL

of vectors in the projection operator (even when those
could generate many spurious eigenvalues before converg-

vectors are not converged). Thus, the PBL can implement
ing. We require the residual of S1 to be «1/1000, and the

a generalization of ‘‘band-by-band minimization’’ of Ref.
CG alone is too inaccurate [21]. A poor approximate vector

[14].
can underestimate the true residual and lead to premature

The final set of eigenvectors may be overcomplete. Lin-
termination of the BL recursions.

ear dependence and duplication of eigenvectors arise from
The selection criterion for converged vectors is deter-

global loss of orthogonality in the BL. Loss of global or-
mined by «2 , the maximum allowable residual in the final

thogonality may be checked before each restart, by per-
answers. A convenient formula is used in step 2 to evaluate

forming a QR factorization of A 5 Ck < Qk
1 , with A [

the residuals before the eigenvectors are constructed in
CN3(p1m). This additional operation was mentioned in Sec-

step 3. This is cheaper, and more importantly, it helps to
tion 3.1, paragraph 6. Whenever we have observed this

identify over-completeness.
problem [21], it is preceded by a breakdown of the mono-

Finally, the initial block, Q1
1 , must be specified. In many

tonically decreasing behavior of the quantity appearing in
applications to quantum mechanics, a good estimate for the

step 2b. We routinely abort the BL recursion when this
eigenvectors is available, being constructed from formal

quantity increases over three recursions. In such an event,
arguments or generated in a previous computation (e.g.,

no new eigenvectors are obtained and only the initial vec-
see Section 5.1). When such is not the case, an orthogonal

tors for the next iteration are updated. In such an event,
set of random vectors is used (e.g., Section 4). In exact

the initial QR mentioned here must be preformed.
arithmetic, the BL would not obtain an eigenvector unless

One may perform a Rayleigh–Ritz procedure as a post-
the initial block contained a (possibly infinitesimal) compo-

processor. See Ref. [4, Section 11-3]. The residual matrix
nent in that direction.

R [ CM3M and the subspace approximation to H, together,
require M additional operator calls. The final residuals are

3.5. Improvements
computed using Section 11-8 of Ref. [4]. The total cost is
M operator calls (not 2M).First, one should shun ZHBEVX in step 2. Since the

SVL is used in step 1h to estimate S1 , replacing ZHBEVX
would appear to be trivial. However, obtaining one ex-

3.6. Comments
treme eigenvector S1 accurately is easy compared to ob-
taining the entire set hSnj for large mk . A sophisticated To complete the exposition of the algorithm, we answer

several questions. Why does one change the operator withSVL is required. The BLAS routine ZHBMV permits this
change without restructing the storage of Tk. each BL iteration? How can one check the final set of

eigenvectors for completeness? Finally, does storing C vio-The LAPACK [2] routine ZHBEVX calls ZHBTRD to
reduce the band matrix to tridiagonal form of full order, late our own stringent memory restrictions? Our answers

rely upon some experimental evidence.n 5 mkJk . The unitary matrix for the corresponding similar-
ity transformation is constructed. This unitary matrix can- Why are projection operators necessary? Suppose, we
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set l 5 0 in step 1a. If the Qk
1 contains good Ritz vectors, only neighbors interact. These are many-body problems

for which only one or two states need to be determined.columns of Wk
1 will zero. In finite precision, roundoff error

dominates these columns and either the QR (step 1e) will When only a few states are needed, better methods are
available. Quantum Monte Carlo appears to win by substi-fail or meaningless quantities will be propagated. The sec-

ond block Qk
2 will be nonorthogonal to the first block, and tuting statistical analysis for vector size.

In contrast, the magnetic dipole examples, require athis may be measured using
great many states to describe spin dynamics of a lattice.
For some of these examples, simple operators (e.g., Sz)Ok

12 5 iQk
1*Qk

2i.
do not commute with the Hamiltonian. For applied mathe-
maticians, this exercise is not block diagonalizable. (MoreLoss of orthogonality limits the minimum achievable resid-
precisely, the unitary transformation is not a direct product;ual from an iterative BL without projection operators (or
see Ref. [22, Section 4.8].) The ability to block-diagonalizeother semi-orthogonalization strategy).
the matrix affects studies of iterative algorithms. For thisWe test the PBL without projection operators. For the
reason, the magnetic dipole examples are better than elec-M 5 m 5 96 example in Table I, the PBL with l 5 0 is
tron spin examples.applied with a fixed inner loop, J 5 8. The Euclidean matrix

We report experimental results using our PBL method,norm of the residual steadily decreases for six iterations
and we report comparisons with the simple BL method.of the outer loop, to 1022. Coincidentally, the Ok

12 increases
The results reported here and in Section 5 were computedwith k to O7

12 5 1024. Two more iterations finds the residual
on an IBM RS/6000 computer with full compiler optimiza-minimum followed by disaster as O9

12 5 1021. The
tion. The IBM ESSL library provided the BLAS routines,improvement/disaster cycle repeats as iterations continue
and an optimized LAPACK was built using default speci-(since l 5 0). With a careful choice of iteration sequence,
fications.one can achieve a residual of 1024 with good efficiency,

but no higher accuracy is possible from an iterative BL
without projection operators. 4.1. Clusters of Magnetic Dipoles

The final set of eigenvectors may be undercomplete,
The quantum mechanics of clusters of magnetic dipolesovercomplete, or both. An eigenvector may have been

is treated. This is an exactly defined mathematical exercise.missed, and another eigenvector may have been dupli-
The Hamiltonian is fully described in chapter three ofcated. A treatment for linear dependence was given in
Slichter’s text [23].Section 3.5. We account for possible undercompleteness

These examples are less sparse than electron spin exer-by setting the desired number of vectors larger than the
cises. All states differing by one or two spins are directlynumber needed by the application. (The idea is to force
coupled, regardless of the component spins (i.e., Sz is notone additional iteration of the outer loop.) This is usually
conserved). Furthermore, states are coupled even if theeffective, since we are starting from the extreme ends of
magnetic dipoles are not nearest neighbors. A significantthe spectrum. However, if a complete set of interior eigen-
number of states must be obtained to describe any NMRvectors are needed, a considerably more sophisticated al-
experiment. Physically, the M should be large enough togorithm is required [10].
obtain the complete band of states contributing to the lineHow costly is storing C? Total memory requirements,
shape of the signal.imply that the PBL could solve a problem ten times larger

The geometry consists of clusters of 12 and 13 protonsthan LAPACK for m1 5 N/800, including storage of C
having high symmetry with hexagonal closest packing. Thebut no storage is required by the operator. If C were elimi-
central proton is either excluded or included. These havenated, m could be increased by 4/3. Thus, memory is not
N 5 4096 and N 5 8192. Fourteen protons use cubic closesta compelling motive for implementing a sophisticated
packing with N 5 16384. All nearest neighbors are equi-scheme for minimizing storage of or access to C.
distant.

The geometric symmetry allows the Hamiltonian to be4. MANY-BODY THEORY OF MAGNETIC DIPOLES
block-diagonalized, since it commutes with symmetry op-
erators in the absence of the Zeeman terms. For N 5 8192The first examples are drawn from many-body quantum

mechanics, specifically, clusters of magnetic dipoles. The and 16384, the number of nonzero matrix elements per
thousand are 10.6 and 6.22. All eigenvalues are doubly de-eigenvectors can determine the relaxation processes re-

lated to nuclear magnetic resonance spectra. This example generate.
Section 4.5 provides N 5 8192 examples including Zee-is sparse and results are given for N # 16384. Dense

Hermitian examples are provided in Section 5. man terms for a field not aligned with any symmetry axis.
The geometry is the same, but the Hamiltonian cannot beThe most important many-body problems are electron

spin models, where spin is a good quantum number and block-diagonalized. If the Hamiltonian were blocked by
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Sz, all diagonal blocks and the off-diagonal blocks, DSz 5
61 and DSz 5 62 are dense. There are 11.9 nonzero
elements per thousand.

4.2. Behavior of the PBL Algorithm

To begin, we illustrate the detailed behavior of the algo-
rithm for two examples. This provides a language and spe-
cific examples for further discussion.

All examples in this section use m 5 96 and obtain the
M 5 96 most negative eigenpairs. (As described in Sec-
tion 3.3, the algorithm has been successfully applied with
M . m .) Unless otherwise noted, all examples use «2 5
20«1 . Only «1 will be reported. All calculations use l 5 I,
since the Zeeman terms are absent and M is relatively

FIG. 1. Distribution of residuals for N 5 16384 sorted by eigenvaluesmall.
with most negative at left. Lines are PBL in order of accuracy: « 5 5p1025,The first example is N 5 8192 with ‘‘high accuracy,’’
5p1027, and 5*10210. Points are BL with « 5 5p10211.«1 5 5 3 1027. The algorithm requires three iterations. The

first iteration, k 5 1, sets m1 5 M and requires J1 5 32
BL recursions. Memory required for the BL recursions is
slightly greater than 2m1 N 5 24 Mb. The size of the Krylov read from the smallest and largest residuals. Convergence
space and the dimension of T1 are m1J1 5 3072. Storage parameters used in this section are not chosen for practical
of T1 requires less than 3 Mb. In step 2, M eigenvectors reasons, but rather to illustrate the algorithm. Please refer
of the band matrix are found. to Section 5.2.

Twenty-three eigenvectors are converged; p1 5 23. In For the highest accuracy curve, «1 was three orders of
step 3, m1 vectors are transformed back to the original magnitude smaller than example two. This curve appears
space to provide 23 converged Ritz vectors, and 73 approxi- identical, but is shifted by 3. Decreasing the ratio «2/«1
mate vectors for Q2

1 . Memory required is m1J1M , 5 Mb forces more restarts and more uniform residuals. The low-
for S1 plus MN 5 12 Mb for C (including V). est accuracy curve demonstrates this by setting «2/«1 5 2,

The second iteration uses a block size of m2 5 73 and instead of 20. The eight restarts in this example are not
requires J2 5 7 BL recursions. The dimension of the Krylov seen, due to the uniformity of the residuals.
space is 511. Converged eigenvectors number p2 5 44. The The figure demonstrates that any level of accuracy may
final iteration uses m3 5 29 block size and J3 5 10 re- be achieved reliably and uniformly. Furthermore, the least
cursions. All eigenvectors are accepted, and the algorithm accurate run demonstrates that inaccurate eigenvectors do
is finished. not cause difficulty in constructing the projection operator.

The second example is N 5 16384 with high accuracy. Theoretically, a uniformly inaccurate residual is possible,
The PBL requires three outer iterations. The first iteration and practically, this can be realized. Uniformly low accu-
uses m1 5 96 block size and J1 5 40 recursions. The size racy approximations are useful when an approximate pre-
of the Krylov space is 3840. Eighteen eigenvectors are conditioners are used. See Section 5.4. Alternatively, a
converged; p1 5 18. The second iteration uses m2 5 78 low accuracy PBL could be followed by a Raleigh–Ritz
and J2 5 10, and p2 5 59 eigenvectors are acceptable. The procedure. See Section 3.5.
final iteration uses m3 5 19 and J3 5 13, and finds p3 5 19.

Figure 1 illustrates the second example. The logarithm 4.4. Comparing BL, PBL, and LAPACK
of the residual for each eigenvector is shown in order,

Why is an iterative BL better than a single BL recur-
starting with the most negative eigenvalue and increasing

rence? A simple BL recursion would involve one run
to the right. Example two appears as the middle solid

through each step of the algorithm, without distinguishing
curve. For each outer iteration, the BL produces a set of

converged and unconverged eigenvectors, «2/«1 5 y. Ex-
vectors whose residuals increase from left to right with a

treme eigenvalues and regions of the spectrum with large
power law dependence. The saw tooth shape provides a

gaps between the eigenvalues converge most quickly. Gen-
graphic illustration of the three restarts.

erally, the residuals are grossly nonuniform, range over
many orders of magnitude, and increase with a power law

4.3. Accuracy
dependence with increasing eigenvalue.

The dots in Fig. 1 are the residuals of the simple BL,Figure 1 shows three PBL runs of varying accuracy for
N 5 16384. The convergence parameters, «1 and «2 , are and comparison should be made to the middle accuracy
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TABLE II the dipolar terms, approximately the ratio for a proton
lattice with 1 Bohr spacing in a 0.1 T field. These termsThe Performance of BL and PBL Algorithms
break the geometric symmetry since the field is not aligned

Example SJkmk CPU h with a symmetry axis. These examples are not block-diago-
nalizable, but these are computationally easier than the

LAPACK 8192 na (28.7)
earlier examples, with large gaps between clusters of quasi-BL 8192 4224 14.9
degenerate eigenvalues.PBL 8192 3873 7.4

LAPACK 16384 na (120.5) We compute the band of double excitations, so M 5
BL 16384 5280 38.9 m 5 92. For high accuracy set «1 5 5 3 1026 and for low

PBL 16384 4867 20.3 accuracy, set «1 5 5 3 1023. Set «2 5 2«1 . Eigenvectors of
the Zeeman Hamiltonian provide an excellent set of initialNote. Two magnetic dipole examples are used, the larger of which is
vectors. For high accuracy, the PBL requires three itera-also shown in Fig. 1. Performance is measured by the total number of

Krylov vectors used and the actual CPU times for the full calculations. tions: obtaining the ground state, the band of single excita-
The ZHBEVX of step 2 dominates the BL timings. LAPACK timings tions, and the band of double excitations. The sizes of the
are estimated using scaling arguments. Krylov spaces are 368, 368, and 552. The average residual

is 3 3 1026, and the maximum is 4 3 1026.
For low accuracy, the PBL obtains both the ground state

PBL curve, example 2. The power law dependence of the and first band on the first iteration. The Krylov space
residuals is the same for both procedures, but the PBL is dimensions are 184 and 368. The average residual for the
more uniform due to the restarts. Indeed, the BL residuals single and double excitations are 0.0075 and 0.0017.
range over five orders of magnitude. The minimum residual A simple subspace iteration scheme is to set the initial
«1 for the BL is four orders of magnitude smaller, but the C1 equal to the p 5 14 Zeeman vectors for the ground
figure shows that least accurate eigenvectors are only ten state and first band. Otherwise, the algorithm is identical.
times more accurate than example 2. (The comparison is Loop over execution of the PBL (triple iteration scheme)
inadvertently and slightly biased.) includes an extra step that redefines C1 , p, and m 5 M 2

For similar accuracy criteria, the simple BL must iterate p. The second PBL assigns C1 to the p 5 78 states from
more, generating a larger Tk. Examples 1 and 2 of Section the first calculation of the second band. The third PBL
4.2 are shown in Table II. The effort required by ZHBEVX assigns C1 to the p 5 14 states obtained in the second calcu-
scales as m3J 2. The Krylov space in the simple BL is so lation.
large that step 2 dominates the CPU time. Table II shows For the low accuracy calculation, each subspace iteration
that the PBL procedure is twice as fast, despite the total uses only one PBL iteration (i.e., PBL 5 BL). Except for
number of operator calls being only 10% smaller. Note the first, each subsequent PBL uses only J 5 2. The average
that m1J1 for the larger PBL is 3840. The BL is estimated residual of the double excitations are 0.676023 and
to be 1.89 times slower based on ZHBEVX alone. Using an 0.676017 after the first and third PBL executions. However,
SVL requires less space, but this ratio could be unchanged. no further improvement is seen after the fifth PBL. Clearly,

Comparison of BL with LAPACK can use scaling argu- a subspace iteration scheme must be more sophisticated.
ments. Actual timings are unfair since these examples are
sparse. Assume that ZHBEVX scales as m3J 2, and assume

5. DENSITY FUNCTIONAL THEORY
that constructing the Krylov space costs mJN2. This is
compared to N3 for ZHPTRD. (Construction of eigenvec- The second example is the density functional theory of
tors is not included in either analysis.) For the two BL diatomic beryllium and Be13 clusters, using plane waves
examples in Table II, the ratios of ZHPTRD to BL are and including all electrons. This example is a dense, com-
estimated as 1.93 and 3.10. This is shown in Table II. plex Hermitian, with all the matrix elements nonzero.

A logarithmic plot of the number of operator calls versus However, the high symmetry of the example generates
matrix size [21] shows that the performance of the PBL a block-diagonalizable matrix. We include the ‘‘Trotter
for this example appears to scale as log(N). This scaling product’’ form of the quantum time propagator [13] as
is likely a result of the decreasing fraction of nonzero applied to plane wave density functional theory [24]. How-
elements as N increases. ever, unlike section 4.5, the examples of Section 5 can be

block-diagonalized.
4.5. Subspace Iteration

Quantum mechanics often results in ‘‘stiff’’ eigensys-
tems, with the eigenvalue gap varying as N (e.g., free wavesThe PBL is tested for ‘‘band-by-band’’ minimization.

The Zeeman terms are included and the bands are the sets and angular momenta). The kinetic energy dominates the
uninteresting portion of the spectrum, resulting in eigen-of single and double excitations.

The Zeeman terms are one thousand times larger than value gaps increasing linearly with the value. Yet, the singu-
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larities at the ionic sites require large numbers of plane Rayleigh–Ritz procedure applied to the kinetic plus ionic
potentials (i.e., no density dependent terms).waves to converge. These are numerically difficult exer-

cises. The operator for this example is beautiful, a convolution
plus the kinetic energy. However, since the plane waveThe first section describes the model in sufficient detail

that the exercise could be reproduced. An important dis- basis is truncated and sorted, the convolution requires indi-
rect addressing. Very little storage is required, as comparedcussion of the relationship between residuals and eigen-

value error includes practical means for choosing conver- to a full matrix representation, but the elements of the
potential vector are not accessed sequentially. Unrollinggence parameters.
the inner loop over the block size provides a large improve-
ment in performance, a factor of four for m510 on our

5.1. Beryllium Clusters
IBM RS6000 workstation.

The example is constructed to be physically interesting
and easily reproducible. These are contradictory goals. We

5.2. Interpretation of Convergence Criteria
simplify the physics, looking at a model for an isolated
cluster, while preserving the major aspects of computa- The convergence criterion, algorithm step 1i, uses the

residual. However, the residual scales with eigenvalue scal-tional solid-state physics. The example does not include
pseudo-potentials, Ewald sums, or Bloch waves. The ex- ing; dividing H by two cuts the residual in half. Thus,

specification of the convergence parameters requires anplicit optimization of core states in a relatively large unit
cell requires a large basis, making this example more nu- interpretation of convergence that is independent of

scaling.merically difficult than the typical electronic structure
problem. The naive interpretation of the residual Rn is that it

places error bars on the computed eigenvalue Ln . ForThe beryllium atoms are located in a cube of length 10
a0 (atomic units). All plane waves are chosen within an isolated Ln the true eigenvalue lies in the interval. How-

ever, this grossly overestimates the eigenvalue error. Weenergy sphere corresponding to a kinetic energy cutoff of
19.34 Hartrees and N 5 4067. The plane wave basis is demonstrate a well-known theorem that places rigorous

bounds on the eigenvalue error, and provides an interpre-not symmetry-adapted. The potential energy is the bare
Coulomb interaction. Analytic form factors are used, im- tation of the convergence parameters «1 and «2 which is

independent of scaling.plying that the electron density over all space interacts
with the nuclei. The repulsion potential also uses these The rigorous bound for isolated Ln is given by the square

of the residual divided by the gap between the true eigen-analytic form factors and a directly computed Fourier
transform of the electron density. The diagonal matrix value and the nearest eigenvalue to which it is coupled.

See Ref. [4, Section 11-7]. The eigenvalue error Dn is ap-elements of the ionic and repulsion potentials are assumed
to cancel exactly. The standard local exchange potential proximated by R2

n/c, where c 5 uLn-Lmu. A relative error
defined by R2

n/c2 provides a convergence criterion indepen-is used, together with a local correlation potential [25].
These are evaluated on a real space grid of size 803 and dent of scaling. This relative error is interpreted as a mea-

sure of the uncertainty of the ordering of the spectrum. Forthen Fourier transformed.
The self-consistent field (SCF) iterations are unstable density functional theory, this measures the uncertainty in

orbital occupation assignments. So, a relative error ex-due to polarization fluctuations of the weakly coupled core
states. The best way to eliminate this difficulty is to explic- ceeding one for any state implies complete uncertainty

in assignments of occupations (if based solely upon theitly block-diagonalize the Hamiltonian and separately
solve for each symmetry species. Our focus is upon defining eigenvalue information). One could automate this conver-

gence criterion by obtaining estimates of several eigenval-a reproducible example that mimics more complex, con-
densed-phase exercises. Focusing upon the applied mathe- ues and their residuals at steps 1h and 1i in the PBL algo-

rithm.matics instead of the physical exercise, we solve the polar-
ization fluctuation difficulty in the usual manner, averaging We provide practical means for observing and interpre-

ting the relationship between Ln , Rn , and Dn . A sensiblethe instantaneous electron density with the averaged den-
sity from the previous SCF iteration. Symmetry is not used, choice of «1 and «2 can be made without adopting a more

complicated convergence estimator. Diatomic beryllium,except that the averaged density is required to be inver-
sion symmetric. oriented along (111), provides an illustration.

A sample of eigenvalue errors and residuals is obtainedInitial vectors are very important in this example because
of the SCF procedure. We use a set of fully converged from step 1i of the BL. The residuals associated with Sk

1

during the BL recursion are immediately available. Thestates of the atom using the same basis. Five functions are
shifted to each atomic center using structure factors. The corresponding eigenvalue Lp11 5 Lk

1 is available at the end
of the current BL recursion. The eigenvalue error is theresulting set is orthogonalized, sorted, and truncated by a
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represents the data while its position is not perfect. For
sets of related eigensystems, as in the example, only a
rough estimate of the magnitude of c is required.

The figure illustrates a consequence of the existence of
matrices that commute with H, allowing it to be block
diagonalized. The plus signs and exes are sample sets taken
from the second outer loop, k 5 2 and p 5 2. The projection
operator forces the converged states to zero eigenvalues
for these eigensystems. The corresponding gap is the eigen-
value difference between s2 and s3 . This is five times larger
than the apparent gap in the spectrum. The apparent gap
would lead one to choose an «1 five times smaller than
necessary. Conversely, one might be misled by this example
to choose a large «1 for an example without symmetry.

Precise choices of «1 and «2 are nontrivial, requiring a
priori knowledge of gaps in the eigenvalue spectrum. The
figure demonstrates that only a rough estimate of the gaps
is necessary for related eigensystems. However, one should
not relate symmetric and nonsymmetric examples. An un-
recognized ability to block-diagonalize the problem causes
one to choose smaller parameters than necessary, which
generates more work but no serious problems.

5.3. Benchmark

Figure 3 illustrates the benchmark calculation for di-
FIG. 2. Eigenvalue errors, residuals, and the choice of convergence atomic beryllium. The performance of the algorithm is

parameters. The Be2 example was fully SCF converged at extraordinarily measured by the number of calls to the block operator,
high accuracy for N 5 4067 and 5041 to obtain a large sample for analysis. m 5 10. The curve shows the convergence criterion for
The nature of the example dictates that p 5 1 and p 5 3 were obtained

each step in the BL recursion. Literally, the abscissa mea-at every SCF iteration. These four sample sets are presented with different
sures CPU time linearly, in a machine-independent man-symbols. Yet, it is unnecessary to resolve individual points. The solid and

dashed lines illustrate two theorems relating eigenvalue error to residual. ner. The ordinate shows the progress towards converging
This method of analysis permits a consistent choice for «1 and «2 for unspecified eigenstates.
arbitrary scaling, aH. Interpreting the abscissa as time, the residual corre-

sponds to the lowest eigenvalue that has not yet been
converged. Restarts of the outer loop and the progression
of SCF iterations appear as vertical jumps, nearly discon-difference between the converged Lp11 and the estimate

obtained using Sk
1 during the BL recursion. An unbiased tinuous breaks in the curve. Vertical dashed lines identify

the beginnings of SCF iterations, and peaks without dashedsampling of pairs (Rp11 , Dp11) is computed for fixed p after
the BL recursion, and various p are obtained as the outer lines correspond to the beginnings of PBL iterations. For

instance, the calculation begins on the left, and four PBLloop over k progresses.
In Fig. 2, the solid and dashed lines represent the two iterations are required to obtain the eigenvectors for the

first SCF iteration. Within the first SCF, the amount of timetheorems relating the eigenvalue error to the residual. The
solid line D1 5 R2

1/c illustrates the accurate interpretation required by each PBL iteration varies. The first iteration is
shown by the residual of the ground state, s1 . The secondof the residual. The naive interpretation says that the eigen-

value uncertainty must lie below the dashed line. Certainly, PBL iteration within the first SCF iteration is shown by
the residual of the third state, s2 . (If only the ground statethis is true. However, the weakness of this upper bound

is apparent. residual were shown, the curve would not vary during the
subsequent PBL iterations.)The solid line uses a single c 5 L3 2 L1 from the final

SCF of N 5 5041. (The first two states, s1 and s1*, are Our recommendation for the use of the PBL in an SCF
procedure is to increase the accuracy as the SCF pro-uncoupled.) Properly, each eigensystem (each SCF itera-

tion) should be graphed separately with a different value gresses. Horizontal dashed lines show the values of the
convergence parameters «1 and «2 . In this example, thefor c. On the logarithmic plot, this changes the position

of the line without changing its slope. The slope accurately convergence parameters are changed once, after four SCF
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FIG. 3. Convergence during PBL and SCF iterations for Be2 example. The curve is the convergence criteria, algorithm step 1i, for each call to
the block operator. BL recursions stop when a specified accuracy is achieved. This is indicated by the curve crossing the lower horizontal line R 5

«1 . Initial vectors for the BL have R . «2 , the upper horizontal line. Vertical dashed lines indicate beginnings of SCF iterations.

iterations, as marked by the bold black line. The change SCF iteration. In the final SCF, only four states are con-
verged, and each initial block consists of four convergedin parameters was dictated by the total energy being con-

verged within 0.001 Hartrees between the beginning and vectors plus six unconverged vectors from the previous
SCF.end of the fourth SCF iteration.

The ‘‘preprocessor’’ is the initial SCF using low accuracy The advantage of a large set of good initial vectors must
be weighed against the cost of obtaining them. The costeigenvectors and requesting moderate SCF convergence.

The SCF procedure is restarted with higher accuracy using outweighs the benefit unless the eigensystems are very
closely related. No further analysis of block size or numbersthe results of the preprocessor as initial vectors. The PBL

parameters are twenty times smaller. The convergence of of converged vectors is provided. Suffice it to say that this
is the benchmark.the total energy during the final SCF is 1026 Hartrees (50

parts per 109). Four SCF iterations are required using the
high accuracy PBL. Note, the total energy converges faster

5.4. Preconditioners and Spectral Transformations
than the individual eigenvalues during the SCF iterations.
The ‘‘history mechanism’’ used to avoid polarization fluc- As shown in Fig. 3, the initial SCF can be converged

with low accuracy vectors. Can these low accuracy eigen-tuations is reinitialized when the SCF is restarted.
In the last two SCF iterations, the curve lies entirely vectors be obtained more efficiently? In this section, we

compare numerical methods based upon solving relatedbelow «2 . The initial ground state eigenvector is sufficiently
accurate to meet the convergence criteria. In other words, eigensystems. We consider ‘‘preconditioners’’ which act

upon the H and ‘‘spectral transformations’’ that are moreno PBL work is needed, but a minimum number of two
BL recursions is required since dm ? 0 in algorithm step complicated functionals of H.

The shift transformation or resolvent (cf. Ref. [22]), 1/2a. The final two eigensystems are nearly identical.
The number of converged eigenvectors, M, obtained (H 2 L), is well known. Eigenvalues near L appear at the

extremes of the transformed spectrum, gaps between themgreatly affects the performance. Ten states were converged
for each SCF in the preprocessor, but during the final SCF are magnified, and uninteresting portions of the spectrum

are made quasi-degenerate. For these reasons, the BL willonly four states were obtained. Throughout, the block size
is fixed at 10. This makes good use of all the initial vectors, converge more quickly. What is more important is that this

method obtains interior eigenvalues. For quantum physicsbut in practice, one would reduce the block size to four
after the preprocessor. The reasoning is that good initial exercises, interior eigenvalues are not required. The effort

required to form the inverse is often prohibitive. However,vectors improve PBL performance, and the preprocessor
is quite fast. So, M 5 m, and the 10 vectors comprising memory storage is the primary hindrance for exercises

where a full matrix would not otherwise be needed.the initial block are all converged vectors from the previous
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TABLE III

Approximate Preconditioners and Spectral Transformations

Label Type Form Function

D0 Diagonal variable ad(H-b)d d22 5 h-b-L L 5 v*Hv
D1 Diagonal fixed d22 5 h-b-L L 5 220
D2 Diagonal function adHd d22 5 f (h/L) L 5 v*hv
E0 Exponential aexp(ch)exp(2cV)exp(ch) c 5 2.01
E1 Exponential aH exp(ch)exp(2cV)exp(ch) c 5 2.02
A1 Band approximation aH9 H9 5 band(H)

B0–B9 Band preconditioner aL21(H 2 b) L21* H9 2 b 2 L 5 LL*
BB0,1 Band/band aL21(H9 2 b) L21*
C0–C3 Band matrix shift aL21*L21

S0 Series approximation 2aB21-aB21(H-b-L)B21 B 5 H9-b-L

Note. The low-accuracy preprocessor for density functional theory might benefit from altered forms of the operator. The forms are given and
labeled. D2, E0, and E1 are specific to density functional theory. E0 and E1 are new. D2 is from Teter et al. [14] and D0 is the Davidson preconditioner
[11, 12]. All others are general and obvious approximations to the shift operator or resolvent. h 5 Hgg 5 ugu2/2 is a real diagonal matrix (kinetic
energy only). Most forms include a spectral shift b 5 10 so that the smallest eigenvalue of H 2 b exceeds 212.2 Hartrees. The v appearing in D0
and D2 is the initial vector indexed pk 1 1 and is changed at the beginning of each BL recursion indexed by k. The function f in D2 is from Ref.
[14]. E0 and E1 use an approximate form of exp(h 1 V); see Ref. [13]. Matrix H9 is band matrix extracted from H. Matrix L is lower triangular,
obtained by Cholesky factorization using ZPBTRF of Ref. [2]. L21 uses ZTBTRS, op cit. S0 is a truncation of a power series that converges if and
only if L21(H 2 b 2 L)L21* has ulu , 1 for all eigenvalues l, which is certainly not true.

Approximations are often used. Table III defines several An approximate exponential transformation, exp(2bH),
was successful in Ref. [13] in difficult single electron exer-approximate preconditioners and spectral transformations

studied in this paper. cises. We extend the transformation to density functional
theory by numerically exponentiating the inverse FourierThe diagonal shift preconditioner is labeled D0 and is

the Davidson preconditioner [12]. When L is an eigenvalue transformation of the full potential, including the repulsion
and exchange correlation terms. The result is a local poten-of H, the corresponding eigenvector could be obtained in

the proper limit [11]. The method is extremely sensitive tial exp(2bV) that is Fourier transformed and applied as
a convolution. The resulting operator is applied alone, asto the approximate eigenvalue v*Hv available at the begin-

ning of the Lanczos recursion. This is a poor choice for a spectral transformation in E0, or as a preconditioner
in E1.block algorithms, and yet we test it with m 5 10. The

restarts of the BL are indexed by k, and for each, the initial The final preconditioners and spectral transforms make
a band matrix approximation H9 to the original H. Appro-vectors are different. The L used in D0 are the values

available at the beginning of the PBL. For instance, if k 5 priate choice of shift L guarantees a positive definite ma-
trix, and Cholesky factorization provides the lower triangu-2 and p1 5 3, then L is the approximate values of the third

initial vector. These values are not updated as k increases, lar matrix L with H9 2 b 2 L 5 LL*.
The band matrix approximation is used in five ways. Forsince the updated initial vectors are less accurate (in our ex-

ample). A1 the approximation is used alone. For B0 to B9, it is
used as a preconditioner. In BB0 and BB1 the approximateUsing a fixed shift, as in D1, is a conservative simplifica-

tion of Davidson’s approach. Unlike D0, it cannot obtain preconditioner is combined with the approximation A1.
In C0 to C3, a spectral transform computes an approximatean eigenvector given an exact eigenvalue. However, when

only poor eigenvalues are available, it is less severe a matrix inverse. Finally, in S0 it uses an approximate inverse
derived from a series approximation.change to the original matrix, while retaining the other

advantages. The fixed shift value of 220 is comparable to
the most negative value of 212.2 (including the b 5 10

5.5. Performance
spectral shift). In other preconditioners, we will use a shift
of 250. Eighteen preconditioners and spectral transforms are

evaluated for the Be2 example. The hope is to accelerateFor density functional theory, a diagonal preconditioner,
D2, introduced in Ref. [14] contributed significantly to the the computation of electronic states. These changes to the

eigenvector problem alter the spectra and affect the perfor-success of their conjugate gradient algorithm. The elements
of d are a nontrivial function of the diagonal elements Hnn mance of the PBL. However, each eigenvector problem is

embedded in an SCF procedure, and the accuracy of theand the energy vn* h vn with h being the diagonal of H.
Such functions are guaranteed to be positive definite. computed vectors affects the overall performance.
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Table IV measures the performance and accuracy of of cost the exponential is applied only once, and E1 is not
Hermitian since the exponential is evaluated approxi-the benchmark and 18 alternative formulations. Forms

based upon a band matrix approximation depend upon mately. We have a good approximation, and so, this poses
no problems in our examples.the band width 2NB 1 1. For Hermitian matrices, NB

is the number of subdiagonal bands (e.g., NB 5 1 for The total cost C of reaching the same SCF-converged
answer at the same accuracy is the weighted sum of thea tridiagonal). Additional storage is (NB 1 1)N. For

NB 5 N/2, the storage required for L equals the storage preprocessor plus the postprocessor. The alternatives are
roughly ordered by total cost, but also they are groupedfor a full matrix inverse, and the band matrix approxima-

tion becomes impractical. by technique and size.
All alternatives are more costly, because the quality ofA shift value of 220 is approximately the least negative

value making all matrices diagonally dominant. This value the preprocessor vectors is not sufficient for the postpro-
cessor. For A1 and C2, the preprocessor is faster thanincreases when necessary, as in all NB 5 2000 examples.

Indeed, both shifts, 220 and 250, are reset to 259 in the the benchmark, but excessive numbers of iterations are
required in the postprocessor. For such electronic structurefifth and final SCF iteration of the preprocessor in all NB 5

2000 examples. Our use of diagonal dominance comes from problems, none of the transformations accelerates the
overall process of reaching the final answer.the Gersgorin theorem (Ref. [22, Section 10.6]). Like the

two interpretations of the residual, diagonal dominance The residuals and overlaps indicate in more detail the
failure of all the transformations. The residuals are for His a weak bound on positive definiteness, and all L are

too negative. (not the transformed operator) at the beginning of the
postprocessor. The scaling should make these comparable,Scale factors a are extremely important in this study.

The residual scales with arbitrary scaling of the matrix. but the differences are substantial because of the SCF.
The strengthening of PBL convergence parameters for theSee Section 5.3. We remove bias due to scaling implicit in

each transformation. If our convergence criteria made use preprocessor would not improve these residuals. Weaken-
ing the parameters may make the residuals more uniform,of calculated gaps in the spectra, this would be unnecessary.

Since our convergence is based upon the weaker theorem, but the SCF may be damaged. Certainly, weakening PBL
convergence would favor the benchmark, which alreadywe must scale the matrices so that the gaps between the

eigenvalues of interest are unchanged. In the context of performs very well. The five SCF steps in the preprocessor
for the alternatives are the principal source of the errors.Section 5.3, the eigenvalue error depends differently upon

the residual for each transformation. Perhaps, preprocessors with only one SCF step and weak-
ened PBL convergence may show better performance.This scaling greatly affects the performance, but it at-

tempts to achieve comparable accuracy for widely different In all cases, except D2, the core states are the problem.
The valence states are reasonably accurate for all excepteigenvector problems. For example, if C0 did not include

a 5 215816, the convergence criteria (with unchanged D2, C0, C1, and C2. The accuracies of E0, E1, B0, and B1
are high. However, these are expensive. The poor accuracyparameters) would be met by every initial vector. C0 would

appear to be perfectly efficient. However, the vectors for of A1 was unexpected and contributes directly to the poor
accuracy of BB0, BB1, C0, C1, and C2. The series approxi-use in the postprocessor would be garbage.

For a fair comparison, we do not accept poor quality mation S0 is worse than its counterpart B3.
The overlaps measure the degree of self-consistency rel-solutions from one transformation. If C0 were taken with-

out scaling, then the convergence parameters for the other ative to the true Hamiltonian. C2 is a disaster, with the
valence orbital of the preprocessor having no overlap withtransformation should be weakened. In particular, the

benchmark, A0, would perform much better for the calcu- the true valence orbital. The result is the largest effort
required in the postprocessor. The correlation between thelation of lower quality vectors.

Performance is the objective. Q is the ratio of the cost overlaps and the efficiency of the postprocessor is stronger
than the correlation with residuals (cf. BB0 and B2). Ap-of the transformed operator to the original. Thus, Q 5 1.0

for the diagonal preconditioners; essentially no extra parently, very high self-consistency is required for efficient
postprocessing.work is required. For the band approximations, we ignore

the cost of the Cholesky factorization. Considering only Finally, two pairs in Table IV prove that our scaling and
our implementation of the transformations are correct. C0the steps required explicitly in the operator, the band

matrix inverse transformations C0, C1, and C2 are and C1 have identical residuals and overlaps, indicating
that the preprocessor vectors are nearly identical. Yet,cheaper than their corresponding preconditioners, B0,

B1, and B2. these are very different calculations. The L, a, and the
numbers IOP are significantly different. Similarly, BB0 andThe cost of applying the exponential operator is the

same as applying H, since both use the convolution. Thus, BB1 are nearly identical except for L, a, and IOP . The
equivalence of these is theoretically required, since theseE1 is twice as expensive as E0. To avoid further escalation
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by startup funds provided FW by the Chemistry Department, and by anTABLE V
HESD award from IBM to FW.

Performance for the Be13 Example

Method IOP JOP max(R) avg(R) REFERENCES

A0 99 96 0.033 0.017 1. C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950).
E0 88 135 0.271 0.163 2. E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. J. Dongarra,
E1 75 126 0.277 0.165 J. Du Croz, A. Greenbaum, S. Hammarling, A. Mckenney, S. Ostrou-
B2 84 238 2.973 1.824 chov, and D. Sorensen, LAPACK Users’ Guide (SIAM, Philadel-
D0 201 259 1.351 1.009 phia, 1992).
D2 93 138 1.673 0.989

3. J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vols. 1, 2 (Birkhauser, Bos-

Note. The preconditioners and transformations correspond to those
ton, 1985).

given in Tables III and IV. The scale factors are unchanged. Performance
4. B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice–Hall,is measured by the numbers of calls, IOP and JOP, to the m 5 30 block

Englewood Cliffs, NJ, 1980).operator. Accuracy is measured by the maximum and average residuals
5. Y. Saad, Linear Algebra Appl. 34, 269 (1980).of the M 5 26 preprocessor vectors at the beginning of the postprocessor.

6. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Man-
chester Univ. Press, Manchester, 1992).

only use the band matrix H9 with no knowledge of H. The 7. B. N. Parlett and D. S. Scott, Math. Comput. 33, 217 (1979).
dependence of IOP on L is as expected. If L were always 8. H. D. Simon, Linear Algebra Appl. 61, 101 (1984).
the eigenvalue for the eigenvector being converged, these 9. T. Ericsson and A. Ruhe, Math. Comput. 35, 1251 (1980).
methods would be extremely fast. However, the postproc- 10. R. G. Grimes, J. G. Lewis, and H. D. Simon, SIAM J. Matrix. Anal.
essor would be unchanged. Appl. 15, 228 (1994).

11. R. B. Morgan and D. Scott, SIAM J. Sci. Comput. 4, 585 (1993).
5.6. Larger Examples

12. E. R. Davidson, J. Comput. Phys. 17, 87 (1975).

To conclude, we apply selected techniques to a larger 13. F. Webster, P. J. Rossky, and R. A. Friesner, Comput. Phys. Commun.
63, 494 (1991).problem, a Be13 cluster with bond length of 2 a0 in a face-

14. M. P. Teter, M. C. Payne, and D. C. Allan, Phys. Rev. B 40, 12255centered cubic arrangement in the highest symmetry orien-
(1989).tation. Most details are the same as Be2 , except that the

15. M. P. Nightingale, V. S. Viswanath, and G. Muller, Phys. Rev. B 48,preprocessor is fixed at 10 SCF iterations and the history
7696 (1993).mechanism uses a 1/4 ratio of new to old densities. Table

16. Note, we do not distinguish between minimization and maximization,V shows the performance and accuracy.
since only the differences between eigenvalues determine conver-

Again, none of the preconditioners and transformations gence.
are more efficient than the benchmark. Interestingly, most 17. E. Dagotto and A. Moreo, Phys. Rev. D 31, 865 (1985).
are faster in the preprocessor. The accuracies are compara- 18. A. Nauts and R. E. Wyatt, Phys. Rev. Lett. 51, 2238 (1983).
ble to those in Table IV. Again, the correlation between 19. K. A. Gallivan, R. J. Plemmons, and A. H. Sameh, SIAM Rev. 32,
accuracy and JOP is not good. Overlaps are more difficult 54 (1990).
to analyze, but correlate better. 20. J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, ACM

Finally, we use the PBL in the method A0 everyday in Trans. Math. Software 16 (1990).
electronic structure calculations similar to, but bigger than, 21. A few conclusions are drawn from numerical experiments not re-

ported in this paper.the Be13 cluster. We also use pseudo-potentials and have
22. P. Lancaster and M. Tismenetaky, The Theory of Matrices (Academictested the method for Hartree–Fock calculations on mole-

Press, New York, 1985).cules. Future publications of chemical and physical calcula-
23. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag,tions from our group will use this procedure.

Berlin, 1985).

24. G. C. Lo and F. Webster, in Proceedings, Sixth SIAM Conf. on ParallelACKNOWLEDGMENTS
Processing for Scientific Computing, 1993, edited by R. F. Sincovec
et al., p. 142.This entire work was supported by the National Science Foundation,

Presidential Young Investigator Award to FW. Computation is supported 25. Vosko, Wilk, and Nusair, Can. J. Phys. 10, 123 (1980).


